ar X iv : m at h - ph / 0 50 10 43 v 1 1 4 Ja n 20 05 Fluctuations of the maximal particle energy of the quantum ideal gas and random partitions

نویسندگان

  • A. Vershik
  • Yu. Yakubovich
چکیده

Fluctuations of the maximal particle energy of the quantum ideal gas and random partitions Abstract We investigate the limiting distribution of the fluctuations of the maximal summand in a random partition of a large integer with respect to a multiplicative statistics. We show that for a big family of Gibbs measures on partitions (so called generalized Bose–Einstein statistics) this distribution is the well-known Gumbel distribution which usually appears in the context of indepedent random variables. In particular, it means that the (properly rescaled) maximal energy of an individual particle in the grand canonical ensemble of the d-dimensional quantum ideal gas has the Gumbel distribution in the limit. We also apply our result to find the fluctuations of the height of a random 3D Young diagram (plane partition) and investigate the order statistics of random partitions under generalized Bose–Einstein statistics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 50 10 43 v 2 1 8 Ja n 20 05 Fluctuations of the maximal particle energy of the quantum ideal gas and random partitions

Fluctuations of the maximal particle energy of the quantum ideal gas and random partitions Abstract We investigate the limiting distribution of the fluctuations of the maximal summand in a random partition of a large integer with respect to a multiplicative statistics. We show that for a big family of Gibbs measures on partitions (so called generalized Bose–Einstein statistics) this distributio...

متن کامل

ar X iv : m at h - ph / 0 20 10 24 v 1 1 0 Ja n 20 02 Eigenvalue correlations on Hyperelliptic Riemann surfaces

In this note we compute the functional derivative of the induced charge density, on a thin conductor, consisting of the union of g + 1 disjoint intervals, J := ∪ g+1 j=1 (a j , b j), with respect to an external potential. In the context of random matrix theory this object gives the eigenvalue fluctuations of Hermitian random matrix ensembles where the eigenvalue density is supported on J.

متن کامل

ar X iv : m at h - ph / 0 50 90 44 v 2 1 1 Ja n 20 06 RANDOM POLYNOMIALS , RANDOM MATRICES AND L - FUNCTIONS

We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.

متن کامل

X iv : m at h - ph / 0 50 10 73 v 1 3 1 Ja n 20 05 Energy Inequalities in Quantum Field Theory ∗

Quantum fields are known to violate all the pointwise energy conditions of classical general relativity. We review the subject of quantum energy inequalities: lower bounds satisfied by weighted averages of the stress-energy tensor, which may be regarded as the vestiges of the classical energy conditions after quantisation. Contact is also made with thermodynamics and related issues in quantum m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008